A Novel Method of Preparing Unsymmetrical Thioether from Disulfides

Jing Xing DU*, Ren Wei ZHENG, Hong Yun GUO, Li Chun KONG

Department of Chemistry, Zhejiang Normal University, Jinhua 321004

Abstract: The disulfides reacted with zinc in DMF, followed by alkyl halides, giving unsymmetrical thioether in excellent yields. This reaction takes place under mild and neutral conditions.

Keywords: Unsymmetrical thioethers, zinc, alkyl halides, disulfides.

Aryl, alkenyl and alkyl thioether are important synthetic reagents and intermediates in organic synthesis¹. They have been widely employed in the synthesis of novel biologically active compounds², polymer materials³ and used as extracting reagents⁴. Many methods for the synthesis of unsymmetrical thioethers have been reported, and the most common approach is use of thiol, which reacted with alkyl halides under basic condition^{5,6} by nucleophilic substitution reaction. Unsymmetrical thioether can also be obtained from the electrophilic addition reaction of thiol with alkene⁷, from Micheal addition⁸, or from the thermolysis of dialkyl disulfides at high temperature⁹. However, these methods have shortages, such as foul smell of thiol, strong basic condition, requiring high temperature or need precious metal. Herein we wish to report a new simple and efficient method for the conversion of the symmetrical disulfides to the corresponding unsymmetrical thioethers by Zn/DMF system under mild and neutral conditions.

Scheme 1

$$R \longrightarrow S \longrightarrow R$$
 $\xrightarrow{a) Zn/DMF, 90, 12 h}$ $R \longrightarrow S \longrightarrow R$
 $b) R X/DMF, 10 h$ 2

Experimental

IR spectra were measured on a Nicolin NEXUS 670 spectrophotometer. Elemental Analysis was carried out with Elementar Vario EL analyzer. Mass spectra were performed by a Agilent instrument. ¹ HNMR spectra were obtained on a Brucker Avance 400MHz spectrometer. Metallic zinc was activated before use referring to

^{*} E-mail:sky29@mail.zjnu.net.cn

Jing Xing DU et al.

literature¹⁰. The DMF was freshly distilled and dried *prior* to use..

Compd.	R	R [′]	Yield $(\%)^*$
2a	PhCH ₂	CH_3CH_2	88
2b	PhCH ₂	$n-C_4H_9$	87
2c	PhCH ₂	<i>n</i> -C ₆ H ₁₃	83
2d	<i>p</i> -ClPhCH ₂	$n-C_4H_9$	82
2e	<i>p</i> -ClPhCH ₂	$n-C_{6}H_{13}$	77
2f	<i>p</i> -ClPhCH ₂	PhCH ₂	91
2g	p-CH ₃ OPhCH ₂	$n-C_4H_9$	82
2h	p-CH ₃ OPhCH ₂	$n-C_{6}H_{13}$	79
2i	p-CH ₃ OPhCH ₂	PhCH ₂	86

Table 1 Yields of products

* isolated yields

General procedure

In a 25 mL three-necked glass flask equipped with a condenser and magnetic stirring bar under dried nitrogen atmosphere were placed zinc powder (2.5 mmol), disulfide (1 mmol), dried DMF (6 mL) and a small amount of I₂ were added subsequently. The resulting mixture was stirred at 90°C for 12 h, until the color of the mixture changed from gray to white. Then alkyl halide (2.5 mmol) in DMF (2 mL) was added through a syringe. The resulting mixture was stirred for 10 h, and dilute HCl (5 %, 15 mL) was added to quench the reaction. After extraction with ether (15 mL×3), the organic layer was washed with water (20 mL) and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was then purified by preparative TLC on silica gel (cyclohexane: ethyl acetate = 9.5: 0.5 as eluent) to give pure product. The analytical data of the products **2a-e** are identical with those reported in reference¹¹. The products **2f-i** are new compounds and their physical data are given in the notes¹².

In conclusion, we have presented a novel method for the synthesis of unsymmetrical thioethers from disulfides by Zn/DMF/RX system. The method reported here avoids release of foul smell of thiol, and uses easily available starting materials. The reaction requires mild reaction conditions and gives excellent yield (77-91%) of the products.

Acknowledgment

We thank the Education Department of Zhejiang Province (Project No.20020851) for their financial support.

References and Notes

- 1. M. Hojo, H. Harada, J. Yoshizama, et al., J. Org. Chem., 1993, 58, 6541.
- 2. J. R. Morris, F. W. Stanislaw, J. Org. Chem., 1993, 58, 3800.
- 3. S. Masumura, N. Kihara, T. Takata, *Macromolecules*, 2001, 34 (9), 2848.

A Novel Method of Preparing Unsymmetrical Thioether

- 4. S. Elmroth, Z. Bugarcic, I. L. Elcling, Inorg. Chem., 1992, 31, 3551.
- 5. B. N. Goswami, R. C. Rastogi, India J. Chem., 1992, 32B, 703.
- 6. T. I. Reddy, R. S. Varma, Chem. Commun., 1997, 621.
- 7. P. Kumar, R. K. Pandey, V. R. Hegde, Synlett, 1999, 1921.
- 8. N. Komatsu, M. Uda, H. Suzuki, Synlett, 1995, 984.
- 9. Z. Y. Wang, G. Bonanno, A. S. Hay, J. Org. Chem., 1992, 57, 2751.
- 10. M. S. Newman, F. J. Aress, J. Am. Chem. Soc., 1955, 77, 946.
- 11. **2a**, **2b**. E. Vowinkel, C. Wolff, *Chem. Ber.*, **1974**, *107*, 496. **2c**. Z. Ostrowski, W. Lesnianski, *Roczn. Chem.*, **1956**, *30*, 981. **2d**, **2e**, **2f**. T. Takido, K. Itabashi, *Synthesis*, **1987**, *9*, 817.
- 12. **2g:** clear yellowish liquid, ¹HNMR(CDCl₃, δ ppm): 0.90 (t, 3H, J = 7.33Hz CH₃), 1.39-1.56 (m, 4H, CH₂), 2.42 (t, 2H, J = 7.33Hz SCH₂-), 3.68 (s, 2H, -CH₂S), 3.80 (s, 3H, OCH₃), 6.85-7.24 (m, 4H, Ar-H). IR(KBr/cm⁻¹): 3000, 2931, 2835, 1610, 1511, 1464, 1250, 1036, 830. Anal Calcd. for C₁₂H₁₈OS: C, 68.52; H, 8.63; S, 15.52; Found: C, 68.38; H, 8.37; S, 15.50. EI-MS: m/z 210.0, 121.0(base), 91, 78. **2h:** clear yellowish liquid, ¹HNMR(CDCl₃, δ ppm): 0.89(t, 3H, J = 7.07Hz, CH₃), 1.24-1.39(m, 6H, CH₂), 1.52-1.60(m, 2H, SCH₂CH₂-), 2.41(t, 2H, J = 7.33Hz, SCH₂-), 3.67(s, 2H, -CH₂S), 3.80(s, 3H, OCH₃), 6.85-7.24 (m, 4H, Ar-H). IR(KBr/cm⁻¹): 3010, 2927, 2855, 1610, 1510, 1464, 1249, 1037, 829. Anal Calcd. for C₁₄H₂₂OS: C, 70.54; H, 9.30; S, 13.45; Found: C, 70.52; H, 9.20; S, 13.55. EI-MS: m/z 238.0, 121.0(base), 91, 28, 41. **2i:** clear liquid, ¹HNMR (CDCl₃, δ ppm): 3.59 (s, 2H, SCH₂-), 3.62 (s, 2H, -CH₂S), 3.83(s, 3H, OCH₃), 6.87-7.32 (m, 9H, Ar-H). IR (KBr/cm⁻¹): 3028, 2952, 2834, 1609, 1510, 1453, 1248, 1035, 833. Anal Calcd. for C₁₅H₁₆OS: C, 73.73; H, 6.60; S, 13.12; Found: C, 73.52; H, 6.43; S, 13.30. EI-MS: m/z 244.0, 121.0(base), 91, 77, 65, 45.

Received 25 August, 2003